

Welcome to causalicp’s documentation!

This is a Python implementation of the Invariant Causal Prediction
(ICP) algorithm from the 2016 paper [https://rss.onlinelibrary.wiley.com/doi/pdfdirect/10.1111/rssb.12167]
“Causal inference using invariant prediction: identification and
confidence intervals” by Jonas Peters, Peter Bühlmann and Nicolai
Meinshausen.

At the point of writing, and to the best of my knowledge, the only other
publicly available implementation of the algorithm is in the R package [https://cran.r-project.org/web/packages/InvariantCausalPrediction/index.html]
written by the original authors.

Navigating this documentation

To run the algorithm, see the function causalicp.fit(). The results of the computation are reported through the causalicp.Result class.

Installation

You can clone this repo or install the python package via pip:

pip install causalicp

The code has been written with an emphasis on readability and on keeping
the dependency footprint to a minimum; to this end, the only
dependencies outside the standard library are numpy, scipy and
termcolor.

Versioning

The package is still at its infancy and its API is subject to change.
However, this will be done with care: non backward-compatible changes to
the API are reflected by a change to the minor or major version number,

e.g. code written using causalicp==0.1.2 will run with
causalicp==0.1.3, but may not run with causalicp==0.2.0.

License

The implementation is open-source and shared under a BSD 3-Clause License. You can find the source code in the GitHub repository [https://github.com/juangamella/icp].

Feedback

Feedback is most welcome! You can add an issue in the repository [https://github.com/juangamella/icp] or send an email.

Contents:

	Welcome to causalicp’s documentation!

	causalicp.fit

	causalicp.Result

causalicp.fit

To run the algorithm, the function causalicp.fit() is provided. The result of
the computation is given in a causalicp.Result object
containing the estimate, accepted sets, p-values, etc.

	
causalicp.fit(data, target, alpha=0.05, sets=None, precompute=True, verbose=False, color=True)

	Run Invariant Causal Prediction on data from different experimental
settings.

	Parameters

	
	data (numpy.ndarray or list of array-like) – The data from all experimental settings. Each element of the
list/array is a 2-dimensional array with a sample from a
different setting, where columns correspond to variables and
rows to observations (data-points). The data also contains the
response variable, which is specified with the target
parameter.

	target (int) – The index of the response or target variable of interest.

	alpha (float, default=0.05) – The level of the test procedure, taken from [0,1]. Defaults
to 0.05.

	sets (list of set or None, default=None) – The sets for which ICP will test invariance. An error is
raised if a set is not a subset of {0,…,p-1} or it
contains the target, where p is the total number of
variables (including the target). If None all possible
subsets of predictors will be considered.

	precompute (bool, default=True) – Wether to precompute the sample covariance matrix to speed up
linear regression during the testing of each predictor
set. For large sample sizes this drastically reduces the
overall execution time, but it may result in numerical
instabilities for highly correlated data. If set to False,
for each set of predictors the regression is done using an
iterative least-squares solver on the raw data.

	verbose (bool, default=False) – If ICP should run in verbose mode, i.e. displaying information
about completion and the result of tests.

	color (bool, default=True) – If the output produced when verbose=True should be color
encoded (not recommended if your terminal does not support
ANSII color formatting), see
termcolor [https://pypi.org/project/termcolor/].

	Raises

	
	ValueError : – If the value of some of the parameters is not appropriate,
 e.g. alpha is negative, data contains samples with
 different number of variables, or sets contains invalid
 sets.

	TypeError : – If the type of some of the parameters was not expected (see
 examples below).

	Returns

	result – A causalicp.Result object containing the result of
running ICP, i.e. estimate, accepted sets, p-values, etc.

	Return type

	causalicp.Result

Example

Using interventional from a linear-gaussian SCM (generated using
sempler [https://github.com/juangamella/sempler])

>>> data = [np.array([[0.46274901, -0.19975643, 0.76993618, 2.65949677],
... [0.3749258, -0.98625196, -0.1806925, 1.23991796],
... [-0.39597772, -1.79540294, -0.39718702, -1.31775062],
... [2.39332284, -3.22549743, 0.15317657, 1.60679175],
... [-0.56982823, 0.5084231, 0.41380479, 1.19607095]]),
... np.array([[1.45648798, 8.29977262, 1.05992289, 7.49191164],
... [-1.35654212, 13.59077259, -1.14624494, 5.76580633],
... [-0.48800913, 11.15112687, 0.48421499, 7.20695569],
... [2.74901219, 8.82465628, 1.49619723, 12.48016441],
... [5.35033726, 12.91847915, 1.69812062, 19.40468998]]),
... np.array([[-11.73619893, -6.87502658, -6.71775898, -28.2782561],
... [-16.24118216, -11.26774231, -9.22041168, -42.09076079],
... [-14.85266731, -11.02688079, -8.71264951, -40.37471919],
... [-16.08519052, -11.73497156, -10.58198058, -42.55646184],
... [-17.07817707, -11.29005529, -10.04063011, -45.01702447]])]

Running ICP for the response variable 3, at a significance level of 0.05.

>>> import causalicp as icp
>>> result = icp.fit(data, 3, alpha=0.05, precompute=True, verbose=True, color=False)
Tested sets and their p-values:
 set() rejected : 6.8529852769059795e-06
 {0} rejected : 0.043550405609324994
 {1} rejected : 6.10963528362226e-06
 {2} rejected : 0.009731028782704005
 {0, 1} accepted : 0.9107055098714101
 {0, 2} rejected : 0.004160395025223608
 {1, 2} accepted : 1
 {0, 1, 2} accepted : 1
Estimated parental set: {1}

Obtaining the estimate, accepted sets, etc

>>> result.estimate
{1}

>>> result.accepted_sets
[{0, 1}, {1, 2}, {0, 1, 2}]

>>> result.rejected_sets
[set(), {0}, {1}, {2}, {0, 2}]

>>> result.pvalues
{0: 1, 1: 0.043550405609324994, 2: 0.9107055098714101, 3: nan}

>>> result.conf_intervals
array([[0. , 0.37617783, 0. , nan],
 [2.3531227 , 0.89116407, 4.25277329, nan]])

Examples of exceptions

A TypeError is raised for parameters of the wrong type, and
ValueError if they are not valid. For example, if alpha is not
a float between 0 and 1,

>>> icp.fit(data, 3, alpha = 1)
Traceback (most recent call last):
 ...
TypeError: alpha must be a float, not <class 'int'>.

>>> icp.fit(data, 3, alpha = -0.1)
Traceback (most recent call last):
 ...
ValueError: alpha must be in [0,1].

>>> icp.fit(data, 3, alpha = 1.1)
Traceback (most recent call last):
 ...
ValueError: alpha must be in [0,1].

if the target is not an integer within range,

>>> icp.fit(data, 3.0)
Traceback (most recent call last):
 ...
TypeError: target must be an int, not <class 'float'>.

>>> icp.fit(data, 5)
Traceback (most recent call last):
 ...
ValueError: target must be an integer in [0, p-1].

if sets is of the wrong type or contains an invalid set,

>>> icp.fit(data, 3, sets = [{2}, {1,3}])
Traceback (most recent call last):
 ...
ValueError: Set {1, 3} in sets is not valid: it must be a subset of {0,...,p-1} - {target}.

>>> icp.fit(data, 3, sets = ({2}, {0,1}))
Traceback (most recent call last):
 ...
TypeError: sets must be a list of set, not <class 'tuple'>.

>>> icp.fit(data, 3, sets = [(2,), (0,1)])
Traceback (most recent call last):
 ...
TypeError: sets must be a list of set, not of <class 'tuple'>.

if precompute, verbose or color are not of type bool,

>>> icp.fit(data, 3, precompute=1)
Traceback (most recent call last):
 ...
TypeError: precompute must be bool, not <class 'int'>.

>>> icp.fit(data, 3, verbose=1)
Traceback (most recent call last):
 ...
TypeError: verbose must be bool, not <class 'int'>.

>>> icp.fit(data, 3, color=1)
Traceback (most recent call last):
 ...
TypeError: color must be bool, not <class 'int'>.

or if the samples from each experimental setting have different numbers of variables,

>>> data = [[[0.01, 0.02],[0.03,0.04]], [[0.01],[0.03]]]
>>> icp.fit(data, 3)
Traceback (most recent call last):
 ...
ValueError: The samples from each setting have a different number of variables: [2 1].

causalicp.Result

The result of running causalicp.fit() is returned in a causalicp.Result object, which contains the estimate, accepted sets, p-values, etc.

	
class causalicp.Result(target, data, estimate, accepted, rejected, conf_intervals, set_pvalues, set_coefs)

	The result of running Invariant Causal Prediction, produced as
output of causalicp.fit().

	
p

	The total number of variables in the data (including the response/target).

	Type

	int

	
target

	The index of the response/target.

	Type

	int

	
estimate

	The estimated parental set returned by ICP, or None if all
sets of predictors were rejected.

	Type

	set or None

	
accepted_sets

	A list containing the accepted sets of predictors.

	Type

	list of set

	
rejected_sets

	A list containing the rejected sets of predictors.

	Type

	list of set

	
pvalues

	A dictionary containing the p-value for the causal effect of
each individual predictor. The target/response is included in
the dictionary and has value nan.

	Type

	dict of (int, float)

	
conf_intervals

	A 2 x p array of floats representing the confidence interval
for the causal effect of each variable. Each column
corresponds to a variable, and the first and second row
correspond to the lower and upper limit of the interval,
respectively. The column corresponding to the target/response
is set to nan.

	Type

	numpy.ndarray or None

Example

>>> import causalicp as icp
>>> result = icp.fit(data, 3)

>>> result.p
4

>>> result.target
3

>>> result.estimate
set()

>>> result.accepted_sets
[{1}, {2}, {0, 1}, {1, 2}, {0, 1, 2}]

>>> result.rejected_sets
[set(), {0}, {0, 2}]

>>> result.pvalues
{0: 1, 1: 0.187430598304751, 2: 1, 3: nan}

>>> result.conf_intervals
array([[0. , 0. , 0. , nan],
 [2.37257655, 1.95012059, 5.88760917, nan]])

When all sets are rejected (e.g. there is a model violation), the
estimate and confidence intervals are set to None:

>>> result = icp.fit(data_bad_model, 3)
>>> result.estimate
>>> result.conf_intervals

And the individual p-value for the causal effect of each variable
is set to 1:

>>> result.pvalues
{0: 1, 1: 1, 2: 1, 3: nan}

Index

 A
 | C
 | E
 | F
 | P
 | R
 | T

A

 	
 	accepted_sets (causalicp.Result attribute)

C

 	
 	conf_intervals (causalicp.Result attribute)

E

 	
 	estimate (causalicp.Result attribute)

F

 	
 	fit() (in module causalicp)

P

 	
 	p (causalicp.Result attribute)

 	
 	pvalues (causalicp.Result attribute)

R

 	
 	rejected_sets (causalicp.Result attribute)

 	
 	Result (class in causalicp)

T

 	
 	target (causalicp.Result attribute)

 nav.xhtml

 Table of Contents

 		
 Welcome to causalicp’s documentation!

 		
 causalicp.fit

 		
 causalicp.Result

_static/minus.png

_static/plus.png

_static/file.png

